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Abstract

In particulate systems with short-range interactions, such as granular matter or simple
fluids, the local structure has crucial influence on the macroscopic physical properties.
This thesis advances our understanding of granular matter by a comprehensive study
of Voronoi-based local structure metrics applied to amorphous ellipsoid configura-
tions. In particular, a methodology for a local, density-resolved analysis of structural
properties is developed. These methods are then applied to address the question of
when the global packing fraction alone is a sufficient descriptor of the structure, and
situations for which this is not the case.

Packings of monodisperse spherical particles are a common simple model for
granular matter and packing problems. This work focuses on packings of ellipsoidal
particles, a system which offers the possibility to study the influence of particle shape
on packing properties, in particular particle anisotropy.

A large scale experimental study of jammed packings of oblate mm-sized ellip-
soids with various aspect ratios α is performed. Packings are prepared with different
preparation protocols to achieve different global packing fractions φg and imaged
by X-ray tomography. Additional datasets of packings are created by Discrete Ele-
ment Method simulations of frictional and frictionless particles with and without
gravity. Furthermore, packings of Ottawa sand samples are analyzed, in an attempt
to investigate the relevance of the ellipsoid model system for real world granulates.

The structure of the packings is analyzed by Set Voronoi diagrams, an extension of
the conventional Voronoi diagram to aspherical particles. We find some surprising
structural properties, specifically related to the local packing fraction φl , defined
as particle volume divided by its Voronoi cell volume. A universality is found in
the probability density function to find a particle with φl in a given packing. The
width of the density function is independent of the aspect ratio α. For spheres,
Aste et al. [EPL 79:24003, 2007] proposed an analytic model for the distribution
of Voronoi cell volumina. Their model strongly depends on the locally densest
configuration, a quantity that was, prior to this work, not known for ellipsoids. We
numerically investigate the locally densest structures and analyze their occurrence
as local building blocks of granular packings. Knowledge of the densest structures
allows to rescale the Voronoi volume distributions onto the single-parameter family
of k-Gamma distributions. Remaining deviations are explained by an excessive
formation of distorted icosahedral clusters.

A robust tool to characterize spatial structures is provided by Minkowski tensors,
which generalize the concepts of interface and moment tensors. Here, we investigate
the shape properties of the Voronoi cells by anisotropy indices βr,s

ν derived from these
tensors. These local anisotropy indices point towards a significant difference in the
local structure of random packings of spheres and ellipsoids. While the average
cell shape βr,s

ν of all cells with a given value of φl is very similar in dense and loose
jammed sphere packings, the structure of dense and loose ellipsoid packings differs
substantially such that this does not hold true.



The average number of contacts Z of a particle with its neighbors is an important
predictor of the mechanical properties of a packing as forces in granular matter are
transmitted through contacts. This conceptually straightforward parameter is, how-
ever, difficult to analyze, since contact detection is hindered by experimental noise
and is often connected to a numerical cut-off. It is less reliable than the continuously
defined analysis by Minkowski tensors. In our jammed packings of ellipsoids, we
find, that Z is a monotonously increasing function of the global packing fraction φg
for all aspect ratios α. This dependence can be explained by a local analysis where
each particle is described by its local packing fraction φl and the average number of
neighbors.

Our results clearly demonstrate the need for a local analysis when ellipsoid pack-
ings are analyzed. Local analyses of this type reveal differences in the structure,
which are not captured by global averages. This points to an important structural
difference to the sphere pack case where the global φg seems to suffice to rational-
ize most observed properties, at least to a good approximation. While our study
specifically addressed “granular matter” models of hard particles subject to gravity,
these finding are likely to also rationalize observations of other soft matter particulate
systems, including colloidal particles or other micron- or nanometer-sized particles.



Zusammenfassung

In Teilchensystemen mit kurzreichweitigen Wechselwirkungen, wie z.B. in Granula-
ten oder einfachen Gasen, ist die lokale Struktur für die makroskopischen physikali-
schen Eigenschaften wichtig. Diese Arbeit trägt mit einer umfangreichen Studie von
amorphen Konfigurationen von Ellipsoiden zum Verständnis der granularen Materie
bei. Die Teilchen-Konfigurationen werden mit lokalen Strukturparametern analysiert,
welche auf Voronoi-Diagrammen basieren. Insbesondere wird eine Methode für eine
lokale Analyse entwickelt, die Strukturparameter nach der Packungsdichte auflöst.
Mit dieser Methode wird die Frage untersucht, wann die Struktur der Packung ef-
fektiv durch einen einzelnen Parameter, die globale Dichte, charakterisiert wird und
wann das nicht der Fall ist.

Ein einfaches Modell für granulare Materie und Packungsprobleme sind Systeme
von Kugeln. Reale Granulate bestehen aus Teilchen, die in Größe und Form variieren.
Diese Arbeit konzentriert sich auf Packungen von Ellipsoiden, welche es ermöglichen,
den Einfluss von der Teilchenform auf die Packungseigenschaften zu untersuchen.

Diese Arbeit beinhaltet eine groß angelegte experimentelle Studie von oblaten mil-
limetergroßen Ellipsoiden mit verschiedenen Aspektverhältnissen. Um verschiedene
globale Packungsdichten φg zu erhalten, werden die Packungen mit verschiedenen
Methoden präpariert. Anschließend werden die Packungen per Röntgentomographie
untersucht. Zusätzlich werden Packungen von reibungsbehafteten und reibungs-
freien Teilchen, mit und ohne Einfluss von Gravitation, mit der Diskrete-Elemente-
Simulationsmethode erstellt. Um die Relevanz des Ellipsoid-Modells für reale Granu-
late zu testen, werden Packungen von sogenanntem Ottawa Sand untersucht.

Die Struktur der Packungen wird mit Mengen-Voronoi-Diagrammen (Set Voronoi
diagrams) untersucht, eine Erweiterung des konventionellen Voronoi-Diagramms
für nicht-kugelförmige Teilchen. Wir finden einige überraschende Eigenschaften,
besonders bezüglich der lokalen Packungsdichte φl , welche das Verhältnis zwischen
Teilchenvolumen und dem Volumen seiner Voronoi-Zelle ist. Die Wahrscheinlichkeits-
dichteverteilung gibt die Wahrscheinlichkeit an, ein Teilchen mit φl in einer Packung
zu finden. Überraschenderweise hängt die Breite der Wahrscheinlichkeitsdichtever-
teilung nur von φg ab und ist unabhängig vom Aspektverhältnis α der Teilchen. Ein
analytisches Modell für die Verteilung der Volumen der Voronoi-Zellen in Kugel-
packungen wurde von Aste et al. [EPL 79:24003, 2007] vorgeschlagen. Das Modell
hängt von der lokal dichtestmöglichen Konfiguration ab, welche vor dieser Arbeit
für Ellipsoide nicht bekannt war. Wir untersuchen numerisch die dichtesten lokalen
Strukturen und analysieren deren Auftreten als Bausteine von granularen Packun-
gen. Mit Hilfe unserer berechneten dichtesten Strukturen können wir die Verteilung
der Voronoi-Zellvolumen auf die einparametrige Familie von k-Gamma Funktionen
reskalieren. Die verbleibenden Unterschiede können mit einer übermäßigen Bildung
von deformierten ikosaeder-förmigen Clustern erklärt werden.

Ein robustes Werkzeug zur Charakterisierung von räumlichen Strukturen sind
Minkowski-Tensoren, welche das Konzept von Oberflächen- und Momententenso-
ren verallgemeinern. Wir erforschen die Formeigenschaften von Voronoi-Zellen mit



Anisotropiemaßen βr,s
ν , die von diesen Tensoren abgeleitet sind. Diese lokalen Ani-

sotropiemaße deuten auf einen signifikanten Unterschied in der lokalen Struktur
zufälliger Packungen von Kugeln und Ellipsoiden hin: In dichten und losen Kugel-
packungen ist die durchschnittliche Zellform βr,s

ν aller Zellen mit gegebener lokaler
Packungsdichte φl sehr ähnlich. Im Gegensatz dazu ist die Struktur in dichten und
losen Ellipsoidpackungen unterschiedlich.

Die durchschnittliche Anzahl an Kontakten Z von einem Teilchen mit seinen Nach-
barn ist eine wichtige Größe, um die mechanischen Eigenschaften von Packungen
vorherzusagen, da Kräfte durch Kontakte übertragen werden. Diese konzeptionell
einfache Größe ist schwer zu berechnen, da die Kontaktpunktbestimmung durch
experimentelles Rauschen erschwert wird und oft stark von numerischen Schwell-
werten abhängt. Kontaktzahlen sind daher weniger verlässlich, als eine Analyse mit
den kontinuierlich definierten Minkowski-Tensoren. Unsere Analyse ergibt, dass
in gejammten Ellipsoidpackungen Z eine mit φg monoton steigende Funktion für
alle Aspektverhältnisse α ist. Diese Abhängigkeit kann mit einer lokalen Analyse
erklärt werden, in der jedes Teilchen durch seine lokale Packungsdichte φl und seine
durchschnittliche Anzahl an Nachbarn beschrieben ist.

Unsere Resultate zeigen deutlich die Notwendigkeit einer lokalen Analyse für Pa-
ckungen von Ellipsoiden. Derartige lokale Analysen enthüllen Unterschiede, welche
durch eine globale Analyse nicht aufgedeckt werden. Dies zeigt einen wichtigen
strukturellen Unterschied zu Kugelpackungen auf, bei denen die globale Packungs-
dichte φg die meisten beobachteten Parameter beschreibt, zumindest in einer guten
Näherung. In dieser Studie wurden speziell granulare Materie Modelle von harten
Teilchen unter dem Einfluss von Gravitation untersucht. Diese Forschungsergebnisse
finden aber auch Anwendung in anderen Bereichen der weichen Materie, wie zum
Beispiel bei Kolloiden oder bei Teilchen auf der Nanometerskala.
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1 Granular matter –
from spherical to aspherical models

Reynold’s Dilatancy

Granular packings play an important role in ev-
eryday life. The interaction between the con-
stituent particles is very simple, but fascinat-
ing physics can result from packing properties
or collective effects of the assembly of grains.
An early example of the intriguing physics in
granulates is Reynold’s dilatancy, described by
Osborne Reynolds in 1886 [166, 167]. Sand on the
beach is, when undisturbed, densely packed. If

the sand is covered with a thin film of water and you step on it, the sand appears to be
drying out. The explanation for this phenomena is that sand on the beach is densely
packed and, locally, in a minimal volume configuration. In order to accommodate
any deformation, such as the one resulting from stepping on it, the packing needs to
expand. The water moves into newly created or expanded void space which leads
to the impression of the drying sand [75, 105]. This example illustrates the typical
property of granular matter physics that structure, shape, geometry and topology are
the key ingredients of an explanation of a physical effect.

Another important physical question relates to the stability of packings of granu-
lates. In the desert, sand dunes are sufficiently strong to support people walking on
them, see Fig. 1.1 (left). But, by contrast, earth quakes can cause large sections of sand
and rock to start to slide, see Fig. 1.1 (right). In geology, the rigidity of such granular

Figure 1.1: (left) People walking up a sand dune in Namib desert. (right) Landslide triggered by an
earthquake in Haiti in 2010. Picture by Randy Jibson, USGS [1].
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Chapter 1. Granular matter – from spherical to aspherical particle models

matter and the understanding of what triggers geological processes like avalanches
or landslides is of great importance [95, 97]. The structure and grain arrangement are
essential determinants of the stability of the granular assembly.

A wealth of other physical properties result in granular systems, from the collective
effects and despite the simplicity of the interactions, including segregation phenom-
ena [51, 123, 141, 148, 158], pattern formation [10, 70, 135, 168], shear-thinning or
-thickening [37, 88], localization of stresses and arch formation [72, 136, 156, 193],
development of characteristic features such as characteristic angles of repose [39,
98, 116], and many others. The various facets of the physics of granular media and
packing problems are the subject of review articles [10, 69, 123, 197, 200] and text
books [6, 15, 48, 62, 87, 90, 145, 168].

Granular Matter, as opposed to granular gases or
particulate fluids, specifically deals with jammed con-
figurations. Jammed configurations are stable pack-
ings of particles where every particle is trapped by
its neighbor particles and cannot move1 [156, 200].
The picture on the left shows a jammed packing
of ellipsoidal particles in a cylindrical container.
The properties of jammed particle packings are in-
triguingly non-trivial and depend on the particle
properties, such as shape or friction, which is the
main topic of this thesis. Given that the microscopic
physics is governed by simple hard-core interac-
tions2, the geometric structure of these packings is
of great importance.

Structural analysis of particle packings

X-ray
source

D
et

ec
to

r

Tomographic methods have revo-
lutionized our understanding of
granular materials, giving unprece-
dented access to the internal struc-
ture of a packing. Specifically, X-
ray tomography is a non-destructive
technique to obtain 3D real-space
data of almost any packing suitable
for particle sizes from µm to cm. In
the standard circular tomography,
the sample is rotated in total by 360◦

while projections are taken from all

1Several different notions of jamming can be distinguished, such as locally, collectively or strictly
jammed. For further information see ref. [197].

2Frictional particles can share additional tangential forces.
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directions.3 Afterwards, a 3D gray-scale image, representing the density field, is
constructed from all the projections. Helical scanning methods, in which the sample
is vertically translated while being rotated, increase the signal to noise ratio and
offer the opportunity to scan long samples [181, 201]. The huge advantage of the
helical scanning is the theoretically exact reconstruction of the 3D gray-scale image in
contrast to circular scanning which depends on approximations [113, 201]. From the
received 3D gray-scale image, positions and orientations of the single particles can be
acquired by methods based on watershed algorithms, see e.g. Refs. [149, 169, 171] and
[P8]. With so-called power watershed algorithms, the separating planes between the
touching particles can be estimated with sub-voxel resolution [100]. This thesis ad-
dresses packings of 3D particles, such as spheres, ellipsoids and sand grains. Packings
are prepared with different preparation methods to create a large range of packing
densities. Tomographic images are recorded and their structure is investigated.

John Desmond Bernal4

Prior to the availability of tomography methods, structural
analysis was performed by manual dissection. Pioneering
work in the description of amorphous packings where grains
are randomly arranged was done by John Desmond Bernal
[31] and David Scott [179, 180] in the 1960s, who experimen-
tally investigated the structure of random sphere packings
initially as models for the structure of liquids. They showed
that jammed amorphous packings of frictional hard spheres
can only be prepared in a finite interval of packing fractions.
The packing fraction or packing density φg is defined as the
ratio of the particles’ volumes and the space they are packed
into. The lowest limit, called Random Loose Packing (RLP), has
a packing fraction of φRLP ≈ 0.55. Below the RLP limit, no
mechanically stable random packing exists [101]. The upper bound is named Random
Close Packing (RCP) with a packing fraction of φRCP ≈ 0.64 [179], substantially below
the theoretically maximal value of φfcc/hcp ≈ 0.74, see below. By contrast, jammed
packings of frictionless spheres always reach the RCP limit, in sufficiently large sam-
ples [156]. An exact definition of the RCP limit is still missing and details are under
debate: It was shown that packings above the RCP limit and a critical packing fraction
of 0.649 contain crystalline domains [104, 110]. In the context of crystallization seeds,
Alexey Anikeenko showed an appreciable fraction of polytetrahedral aggregates at
critical packing fraction of≈ 0.646 [7], which is close to φRCP. On the more conceptual
level, Salvatore Torquato introduced the Maximally random jammed (MRJ) state which
is defined as the least ordered packing among all jammed packings and results in a
packing fraction of φMRJ ≈ 0.64 for frictionless spheres [198]. This is in contrast to
RCP which asks for the densest of all random packings. Further theories exist, see e.g.
Refs. [22, 164], but an exact definition is still missing.

3The resolution of the resulting image is increased by rotating 360◦ rather than the minimum needed
180◦ + fan angle [76].

4Picture from Ref. [69]
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Chapter 1. Granular matter – from spherical to aspherical particle models

Globally and locally densest configurations

B

A

B

A

HCP

A

C

B

A

FCC

For spheres, the densest possible crystalline
structures are known and can be identified.
These are the face-centered cubic (FCC)
or hexagonal close-packed (HCP) config-
urations resulting in a packing fraction of
φfcc/hcp ≈ 0.74. Both packings consist of
stacked hexagonal lattice planes of spheres,

which are shifted against each other. The HCP crystal consists of two (A-B-A), the
FCC crystal of three (A-B-C) alternating planes, see figure on the left. Combinations
of FCC and HCP are as well densest packings. The conjecture that the FCC struc-
ture is the densest crystal packing was proposed by Kepler in the 17th-century [15],
but remained unproven for many years. Recently it was proven by Thomas Hales
[81, 126]. The question of non-densest crystalline sphere packings has been exhaus-
tively addressed by Werner Fischer, Elke Koch and others, see [118] and references
therein.

icosahedral cluster

As described above, the globally densest sphere packings, i.e.
the crystalline ones, are known in 3D. However, there is a differ-
ence between what is the densest local and what is the densest
global configuration. The local density of a particle φl is defined
as the ratio between the particle’s volume and the volume of its
Voronoi cell, see below. Locally, the question of the densest config-
uration is related to a classical problem in mathematics dating back to Isaac Newton:
The “Kissing problem” poses the question how many spherical particles can simulta-
neously touch a central sphere. The answer, in dimension 3, is twelve [48, 177]. The
icosahedral cluster, see image on the right, is the most symmetric way to arrange the
twelve ”kissers“ and maximizes the local packing density. With a packing fraction of
φico = 0.755, ideal icosahedra are about 1% denser than the previous mentioned best
crystal arrangements (FCC/HCP) of congruent spheres [15]. Icosahedral clusters are,
however, not space-tiling, i.e. it is not possible to fill a whole container with spheres
all arranged in icosahedral configurations to one another. By embedding (distorted)
icosahedral clusters, disordered granular packings can locally (but of course not
globally) exceed the density limit for the space-tiling sphere packings. Fig. 1.2 (top)
shows a summary of possible jammed packings of spherical particles.

The frustration between the local and global features is an in-
herent feature of sphere packings in 3D Euclidean space. For
disc packings in two dimensions, the globally and locally dens-
est structures are the same, namely the hexagonal configuration
[48]. Hence, in two dimensions, the locally densest structure is
space-tiling in contrast to three dimensions. Disc packings in two

dimensions have a strong tendency to crystallize during compaction [131, 132, 139].
One way to avoid crystallization is to introduce polydispersity, a standard ”trick“
widely used in the glass community [159, 186].
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Shape matters – packings of aspherical particles

...

In general, particles in nature and industry, such as sand
or pebbles, vary widely in size and shape. In order to
understand packing effects of such complex shapes, the
packing properties of simple geometric shapes have to be
known. Spheres are only the simplest case and are also
special in terms of their rotational symmetry in all direc-
tions, which affect the degrees of freedom. The study of
packings of particles with simple aspherical shape offers
the possibility to assess the effect of particle shape on the
packing properties. Obvious generalizations of spheres
are ellipsoids, packings of which are the main subject
of this thesis and which have been extensively studied
elsewhere [47, 54, 55, 56, 57, 60, 137, 190, 208, 210]. Other
particle shapes studied in the literature are tetrahedra [40, 80, 150], superellipsoids
[54, 102, 190], lense-shaped particles [44] and many more [41, 61, 119, 170, 194, 202].
The packing properties of polyhedra are as well under investigation [41, 50]. For all
of these shapes, it still remains a challenge to understand how collective properties of
packings arise from microscopic mechanisms on the particle level.

5



Chapter 1. Granular matter – from spherical to aspherical particle models

e1 e2

e3

uniaxial ellipsoid: e1 = e2 6= e3
aspect ratio: α = e3/e1

Ellipsoids offer a systematic pathway to study
the influence of shape to the structure of particle
packings. The shape can be varied by changing
the aspect ratio of the particles. Here, we consider
uniaxial ellipsoids with two half-axes of the same
length, also known as spheroids, or ellipsoids
of rotation. The aspect ratio α is defined as the

fraction of the individual axis and the two with identical lengths. Ellipsoids with
α < 1 are called oblate and ellipsoids α > 1 prolate.

globally locally

A first property of interest for aspheri-
cal particles is the maximally dense crystal
packing, equivalent to the FCC/HCP pack-
ing in spheres. The finding of the dens-
est crystal packings for ellipsoidal particles
is more complex than for spheres, due to
their additional rotational degrees of free-
dom. Candidates were proposed by Donev
et al. [57], but without proof of optimality. Recently, for self-dual ellipsoids (α : α

1
2 : 1)

with α ≈ 1.4, a new densest crystal structure was discovered [103]. While a mathe-
matical proof of optimality is missing, it is clear that the densest crystal packings of
ellipsoids are denser than the FCC and HCP packings of spheres, see Fig. 1.3.

The question of the locally densest configurations of ellipsoidal particles is part of
this thesis. In a generalization of the kissing problem, we consider a central particle
and the N first-shell neighbor particles and numerically optimize their local structure.
The resulting configurations and the optimal number of nearest neighbors depends
on the aspect ratio of the particles [P1], see section 4.1.
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Packing fraction of jammed frictionless ellipsoids5.

Random packings of ellipsoids
have been mainly studied with sim-
ulations. Donev et al. [56] gen-
eralized the Lubachevsky-Stillinger
(LS) sphere packing algorithm [131,
132] to the case of ellipsoids [58,
59]. They showed, that friction-
less ellipsoids can form denser
amorphous jammed packings than
spheres, even denser than the dens-
est crystal packings of spheres. In
this sense the sphere is worst in
building dense amorphous pack-
ings, which is observed as well for

lattice packings [106, 107] and the densest local configurations [P1], see Fig. 1.3 (top)
and section section 4.1. In real granular packings, another important parameter

5Plot reproduced from Ref. [56], with permission from AAAS.
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despite from particle shape, which effects packing properties as e.g. stability of the
packing, is friction – a second focus point of this thesis. Discrete Element Method
(DEM) simulations offer the opportunity to create packings of frictional ellipsoids.
Packing experiments on ellipsoid packings were performed with two different types
of ellipsoidal particle shapes [56, 137]. This thesis represents the first experimental
large scale study comprising five different aspect ratios and two different friction
coefficients, see Ref. [P5] and chapter 2 and 5.

Performing DEM simulations with highly frictional ellipsoids, the limit of the
loosest random packings can be investigated [55]. While various definitions of the
loosest packings exist for spheres, more recent work focuses on the definition as the
loosest random packing that can be achieved by pouring or sedimenting grains under
the influence of gravity and is mechanically stable [43, 101]. Delaney et al. [55] called
this limit the Sedimented Loose Packing (SLP). A crucial point in random packings of
ellipsoids is the definition of randomness. Particles with a preferred direction, such
as ellipsoids, can show orientational order (align with each other), in the absence
of any translational order [54, 154]. Packings of aspherical particles prepared by
sedimentation can have a significant degree of orientational ordering, because the
particles tend to align with the direction of gravity [55]. A simplified phase diagram
for jammed ellipsoidal particles is presented in Fig. 1.3 (top). An explanation for the
observed high correspondence of packings of prolate and oblate ellipsoids is still
missing.

Contact numbers and mechanical stability

contacts are marked in red

In granular systems the average number of contacts a parti-
cle forms with its neighbors is used commonly as a predic-
tor of the mechanical properties of the system, since forces
are transferred trough the contacts. The distribution of the
contacts throughout the system can give information about
how the system responds to external forces [25, 73, 92, 136].

The minimal number of contacts required for a stable
packing is called the isostatic contact number Ziso. For ex-
ample, frictionless spheres have an isostatic contact number
Ziso = 6 [156, 200]. This can be obtained by a simple con-
straint counting [200]: Frictionless contacts can only fix one
normal force, which is shared between the two particles in-
volved. Hence, per particle each contact provides 0.5 constraints and as each particle
possesses three translational degrees of freedom, at minimum of six contacts is needed
for a particle to be fully constrained by its neighbors. For spheroids this number
increases to 10 and for fully aspherical ellipsoids 12 contacts are needed due to their
additional rotational degrees of freedom [200]. For frictional particles Ziso reduces to
four. In this case the particles have as well rotational degrees of freedom and each
contact can fix three force components, one normal and two tangential. Details about
contact numbers of granular packings are given in chapter 5 and Ref. [P5].
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While conceptually important and simple, contact numbers are nearly impossible
to extract robustly from 3D images. In experimental packings of particles, e.g. imaged
by X-ray tomography, contacts between particles are very hard to detect due to
noise in the imaging and in the particle detection [P8]. Even in simulations, the
contact detection is hard and often connected to a numerical cut-off. A slight change
of the position of one particle can change the whole contact network around that
particle. Furthermore, there are particle systems where the particles are not in contact,
see below. This deficiency calls for alternative structure metrics, methods to gain
quantitative information about the spatial arrangement.

Structure metrics and Voronoi diagrams

Commonly used structure metrics to describe global (averaged) properties are the
mean intercept length tensor MIL characterizing anisotropy by a directional analysis
of the segments of random lines within the two different phases of a binary image
[84, 206], hyperuniformity which characterizes spatial density fluctuations [195], or
Fourier transforms, see e.g. Refs. [38, 199].

A widely used locally defined order metric is the bond-orientational order parame-
ter Ql defined by Steinhard et. al [189]. Q6 depends crucially on the neighborhood
definition which can change the numerical values as well as the qualitative functional
trend [147]. Furthermore it is not a continuous function of the particle coordinates.
Given all these shortcomings, Q6 is not a very robust measure to describe disordered
packings.

Voronoi tessellation

More robust metrics to describe the local structure of
particle packings can be derived from Voronoi tessella-
tions [157]. The Voronoi tessellation associates with each
particle a region of space, called the Voronoi cell, that
is closer to this particle than to any other. The Voronoi
cells capture the local geometrical arrangement of a par-
ticle relative to its neighbors. The statistical distribution
of the volumes of the Voronoi cells of sphere packs has
been studied in the context of granular materials [18]

[P4] [P5] and liquid and super-cooled fluids [187]. In particular, distributions of
Voronoi cell volumes are sensitive to structural transitions in granular assemblies
[68, 70, 115, 129, 176, 187, 205] [P4]. For spheres, an analytic model exists, which
predicts the full distribution of Voronoi cell volumes [14, 18]. An extension to el-
lipsoidal particles is described in chapter 4. In the so-called Edwards ensemble (a
statistical mechanics approach to describing granular material through an analogy
with equilibrium ensembles), Voronoi cells relate to the equivalent of temperature,
the so-called compactivity [8, 23, 32, 64].

Different measures have been invented to quantitatively describe the geometric
shape of the Voronoi tessellations. Simple descriptors are the volume or the surface
area of the cell. Tensorial measures are sensitive to anisotropic and orientational
aspects of the cells. Examples are the tensor of inertia I [77], the quadrupole ten-
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Chapter 1. Granular matter – from spherical to aspherical particle models

sor Q [96, 151] or Minkowski Tensors Wr,s
ν , the approach used in our work, see

Refs. [P4], [P7] and [P13]. An overview is presented in chapter 3 as well as an
extension for the Voronoi tessellation for non-spherical particles.

Equilibrium hard particle systems

Equillibrium hard sphere system -
below and above the phase transition

In contrast to the above discussed athermal sys-
tems, where thermal fluctuation are neglectible,
are thermal equilibrium systems. A common
reference system is the hard sphere equilibrium
fluid (also known as Gibbs ensemble [42]), where
the only interaction between the particles is hard-
core repulsion. No external force, like gravity,
is applied to the system. Hard sphere fluids
show a first-order phase transition between a dis-

ordered and ordered state which is of purely entropic nature. In between, from
0.494 . φg . 0.545, a coexistence region exists, see Fig. 1.2 (bottom). This is different
to the hard disc fluid in two dimensions, which show a two step transition which
was the subject of much debate around the famous KTNHY conjecture [109]. A
morphometric analysis of the Voronoi diagram can reveal these phase transitions, see
e.g. Ref. [P14]. For non-spherical particles the behavior is more complex. Frenkel
et al. provided the first basic picture of the phase diagram of hard spheroids [71].
They showed that ellipsoids can form additional phases which are nematic phases
or plastic solids, that appear for different aspect ratios at different packing fractions.
Nematic phases show orientational order but no order in the position of the particles,
plastic solids show order in position but no orientational order [53, 154]. An overview
is shown in Fig. 1.3 (bottom).

Beyond granular materials – nano- and micron-scale packings in soft matter

Scanning electron micrograph
of wing scale. Image from [207]

Questions related to particulate assemblies are, however,
by no means restricted to granular materials. The question
how particles pack exists on various length scales, and
is very important in many different fields from biology
to industry. On the nano scale, physicists discovered
that the crossribs and ridges of the wing scales of the
butterflies of the Pieridae family are decorated with small
ellipsoidal beads, see figure on the left. A high pigment
concentration in these beads and light scattered at the
irregular arrangement are responsible for the different
colors of the butterflies [188, 207].

A further particularly striking example of the relevance of shape is provided
by a recent study of ’pear-shaped’ particles [65, 178]. These particles are tapered
ellipsoids, that is, rotationally symmetric particles with one wide and one narrow
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end. As a thermodynamic hard-core fluid these assemblies adopt –apart from the
conventional liquid crystalline nematic, smectic and disordered phases– a highly-
symmetry network-like bicontinuous ’Gyroid’ phase. This phase with one of the
highest spatial symmetries possible in 3D space is generated in this purely entropy-
driven system, without attractive or repulsive interactions except for the hard core
collisions. It is an interesting open question if granular systems, rather than thermal
systems, can also be coaxed into adopting such high-symmetry meso-scale spatial
order.

truncated cubes octahedra
(scale bar: 1 µm)

Images reprinted with permission from [91].
Copyright 2009 American Chemical Society.

In chemistry, the influence of shape to
the formation of self-assembled packing
structures of nanocrystals or the synthesis
of colloidal particles of varying shape is of
great interest [74]. The Figure on the right
shows SEM images of Cu2O nanocrystals.
Examination of their facet-dependent phys-
ical and chemical properties may enhance
properties and functionality of nanomate-
rials [91, 93].

Polydisperse packings and shape variations

Packing experiment with
Ottawa sand

The properties of particle packings have broad rele-
vance in nature, industrial applications and physics,
where particles have usually different sizes and are
often irregular and randomly shaped. To assess the
effect of grain size, we perform experiments with
bidisperse ellipsoids, i.e. ellipsoids with the same
shape (aspect ratio) but two different sizes, see sec-
tion 2.1.2. Varying the mixing ratio of the two particle
sizes will help to understand packings of real poly-
disperse packings, where all particles have different
sizes. Experiments on Ottawa sand are performed to
investigate the effect of grain irregularity to particle
packings, see section 2.1.2 and Ref. [P10].

Packings of particles with complex shapes show
complicated behavior with various effects. The
paradigmatic approach of physics is the reduction
of a system of such complexity to the quintessential toy model that has minimal
ingredients to still show the effect in question. The simplest approximation of a
granulate are spheres, which already show a complex behavior where details are still
under investigation. Ellipsoids offer the possibility to investigate the effect of particle
shape to the packing properties. By varying the aspect ratio, the particle shape can
be changed continuously from spherical to very elongated. The effect of grain size
variations can be assessed with packings of bidisperse ellipsoids, and the effect of
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Chapter 1. Granular matter – from spherical to aspherical particle models

shape irregularity by Ottawa sand grains with the same volume. The analysis of
these toy models helps to generate and improve particle models and to understand
the collective behavior of particle systems with complex grain shapes.
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2 Tomographic experiments and
simulations of ellipsoid packings

This chapter provides an overview over the different particle types, experimental
setups, tomographic imaging methods as well as the numerical simulation methods
used for creating packings of ellipsoids. With more than 100 tomographic datasets
and more than 1000 numerically generated datasets, this work represents one of the
most comprehensive study of packings of ellipsoidal particles.

2.1 Preparation and tomographic imaging of packings

2.1.1 Frictional monodisperse ellipsoids

PRL 2015

AIP 2013
3D printer pharmaceutical placebo pills

Our experimental study com-
prises two different types of
oblate ellipsoids with various
aspect ratios, the properties
of which are summarized in
Tab. 2.1. The pharmaceutical
placebo pills (PPP) have an as-
pect ratio of α = 0.59. Due to

their sugar coating, their surface is rather smooth and their static coefficient of friction
µs is rather low. The second particle type are gypsum ellipsoids cured with resin,
produced with a 3D printer (Zprinter 650, Z corporation). The aspect ratio of these
3DP particles ranges from 0.4 to 1 (i.e. spherical). Their rougher surface results in a

aspect half axis type friction particles number of
ratio short long coefficient in core analyzed

α [mm] [mm] µs region packings
spheres 3.1 3DP 0.75± 0.07 660-850 15

0.80 2.65 3.30 3DP 0.75± 0.05 750-850 17
0.60 2.20 3.75 3DP 0.67± 0.03 620-710 16
0.59 2.15 3.55 PPP 0.38± 0.05 850-910 15
0.40 1.60 4.00 3DP 0.67± 0.05 620-730 10

Table 2.1: Material properties of the particles used in the experiments.
3DP = 3D printer particles, PPP = Pharmaceutical placebo pill.
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Chapter 2. Tomographic experiments and simulations of ellipsoid packings

higher friction coefficient µs, which leads to looser packings compared to the PPP
particles.

Packings of frictional particles can result in a range of global packing fractions. To
cover a large part of possible packings, we prepare initial loose packings of ellipsoids
inside a perspex cylinder with an inner diameter of 104 mm. The global packing
fraction can be increased by tapping the packing using a shaker. The final density
depends on the initial preparation method and on the number of applied taps. We
use three different methods to prepare the initial packings:

• tube: A tube with an inner diameter of 90 mm is placed into the container
and then slowly filled with ellipsoids poured through a funnel. Then the tube
is manually pulled out very slowly. Particles close to the cylinder wall can
move into the freed space and create a loose packing. This method is very easy
to apply but creates a radial inhomogeneity of the packing fraction, because
particles in the center cannot use the freed space and are more densely packed
than particles close to the cylinder wall. Most of the packings created with this
method are discarded because of these radial inhomogeneities.

• horizontal grid: A tube with an inner
diameter of 90 mm is placed into the
container. Inside the tube are several
meshes of metal rods. By pulling out
the tube very slowly, the particles are
slightly lifted and rotated by the rods
which gives all particles the ability to ro-
tate and arrange in a loose packing. The
orientations are distributed fairly ran-
domly. This method creates the most
homogeneous packings and is therefore
used most. horizontal grid ⇒ loose packing

• f luidized: The ellipsoids are fluidized by an upward air
flow through the cylinder, which is then slowly reduced
to let the ellipsoids settle in a very loose configuration. By
using this method, the particles can align with the air flow,
which can result in a packing with orientationally ordered
domains. The airflow needs to be very homogeneous to
create disordered packings. Applying an inhomogeneous
airflow to the packing, only parts of it will be lifted and
convection occurs. This method is used to create the loos-
est packings.

Except for the loosest samples, the packings are then compactified by applying sinu-
soidally shaped pulses on an electromagnetic shaker (LDS V555).
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2.1. Preparation and tomographic imaging of packings

Compaction by tapping

We apply three taps per second with a peak
acceleration 2 g (where g = 9.81m/s2). The
chosen peak acceleration is higher than the
gravitational acceleration on earth which al-
lows the particles to move and rearrange [161].
The pulse width is 50 ms, resulting in very fast
pulses followed by a relaxation time of 270 ms
which allows the particles to fully settle before
the next pulse is applied. It can be thought
of as tapping the container on a table top. By
varying the number of taps (up to 1500), pack-
ings of different densities are created.

Volume rendering detected particles
of tomographic grayscale image

Tomograms of the pre-
pared packings are acquired
using circular X-ray com-
puted tomography with a
resolution of 64 µm per
voxel. The resulting three-
dimensional gray scale image
is the starting point for the
identification of all particle
centers and orientations us-
ing the methods described in
[P8]. To reduce boundary ef-
fects, particles close to the top
and bottom of the packing as well as close to the container wall are discarded, details
see Ref. [P5]. The resulting configurations are in addition tested for spatial homo-
geneity. The particle positions and orientations can be downloaded from the Dryad
repository [2].

2.1.2 Frictional bidisperse ellipsoids

Most published studies analyzed packings of monodis-
perse particles. Given the obvious relevance of poly-
disperse packings to model realistic systems we ana-
lyze bidisperse ellipsoid packings, i.e. packings which
contain ellipsoids of two different sizes but both with
the same aspect ratio. The aim of this work is to iden-
tify the key mechanisms of granular compaction and
to study the Voronoi diagram of such bidisperse pack-

ings. The packings analyzed here consist of pharmaceutical placebo pills with aspect
ratio α ≈ 0.57 and large axis lengths of 8.9 mm and 10.2 mm. The particles mixing
ratio is chosen such that the total volume of each particle type in the container is
identical. This results in a mixing ratio of 3:2 (small particles : large particles).
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Chapter 2. Tomographic experiments and simulations of ellipsoid packings

Figure 2.1: Loose packing preparation: (left) During the initial filling the container is rotated on a
motorized platform. (middle) The two grids have been pulled out slowly to create a loose
packing with random particle orientations. (right) Final loose packing.

Pictures of the different stages of the preparation of the initial packing are shown in
Fig. 2.1. To create an initial random packing, the particles are poured into a container
of diameter 144 mm. During the filling stage, the container is rotated slowly on
a motorized platform (≈ 10 rotations per minute) to create a homogeneous filling.
After the cylinder is completely filled, two grids, which have been placed before at
the bottom of the container, are pulled slowly through the packing to create a loose
packing. The circular grids have a square mesh size of ≈ 20 mm, spatially separated
by≈ 25 mm in height and their mesh orientation is rotated by 45 degrees with respect
to each other. This technique leads to a reproducible loose packing with a packing
fraction of 0.657± 0.003, see Fig. 2.2. To compactify the packing, we follow the same
tapping procedure as for the monodisperse packings by performing sinusoidal pulse
taps of an accelerations of 2 g with an electromagnetic shaker (TIRA TV51140).

The resulting packings are imaged by helical X-ray tomography in which the
sample is vertically translated while being rotated. This offers the opportunity to scan
the whole length of the sample. Another advantage of the helical scanning method is
that the resulting 3D gray-scale image can be reconstructed without approximations
and results in a less image [113, 181, 201]. The resulting gray-scale image has a voxel
size of 56 µm. The particle positions and orientations are again detected by the
watershed based segmentation method described in Ref. [P8]. Particles close to the
boundaries (cylinder walls, top and bottom) are removed from the analysis.
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Figure 2.2: (left) Change of the global packing fraction φg during tapping of packings of bidisperse
ellipsoids. In blue the fit of the KKW law to the data. (right) Acceleration during a single
tap. The acceleration at the container base is measured using an accelerometer (B&K 4507,
1000mV/g) via the shaker systems motion controller (Vibration Research, VR9500).

Fig. 2.2 shows the densification of the system during tapping. Up to 106 taps
are applied, which results in the packing with the highest global packing fraction
φg ≈ 0.709. The densification is reminiscent to relaxation and compaction dynamics
in glassy systems which are commonly fitted by a stretched exponential law, the
KWW (Kohlrausch, Williams, Watts) law [117, 161]

φg = φinf − (φinf − φ0) · exp
[
− (#taps/τ)β

]
(2.1)

A fit of the KKW law to our data of bidisperse ellipsoids is presented in Fig. 2.2.

2.1.3 Ottawa sand

The most complex analyzed
samples in this work are pack-
ings of Ottawa sand. Ottawa
sand is silica sand mined from
Ottawa, Illinois. The sand is
composed of rounded grains
with high crush resistance and
is used as a standard by the
American Society of Testing Ma-
terials [29]. To reduce the poly-
dispersity in grain size, the sand
is sieved and only sand grains
between 500 µm and 1 mm in
diameter are used in the experi-
ments.
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Chapter 2. Tomographic experiments and simulations of ellipsoid packings

binary image detected particles

Figure 2.3: (left) Slice of a 3D binarized tomographic image of a packing of Ottawa sand. (right) Detected
particles after using the watershed based method in Ref. [P8].

Packing experiment with Ottawa sand
(left) container with grid, (right) final packing

The preparation method is
similar to the preparation of
the ellipsoid packings. A loose
packing is created by filling the
grains inside a cylindrical per-
spex container with a diame-
ter of 24 mm. By pulling a
double grid through the sand,
the packing is loosened and the
grains are oriented randomly.
Afterwards most of the pack-
ings are compacted by sinu-
soidal taps with different accel-
erations, from 0.5 g to 2 g. After
imaging the particles by helical
X-ray tomography with a voxel
size of 9 µm, the particles are

detected by a watershed segmentation method [146, 149, 169, 171] [P8], see Fig. 2.3.

First experiments show a visual onset of convection inside the packing after a
few taps with an acceleration of 2g. Particles in the middle of the container move
upwards and a sand pile-up in the middle is observed. The resulting packings are
radially very inhomogeneous. In the future, more packing experiments with a smaller
acceleration are planned to reduce convection effect and generate more homogeneous
dense packings.
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2.2. Simulations

2.2 Simulations

2.2.1 Dense packings – Lubachevsky-Stillinger-Donev protocol

Dense jammed random packings of frictionless el-
lipsoids are created by the Lubachevsky-Stillinger-
Donev protocol [58, 59], that corresponds to a slow
compression of an initially loose packing to a jammed
structure. This packing protocol does not implement
gravity. As initial condition, 5000 small particles are
randomly placed in a box with periodic boundary
conditions. The compression of the system is realized
by expanding the particles. The expansion rate has
to be chosen rather slow to produce dense jammed
packings, but not too slow, to avoid the eventual for-

mation of crystalline domains. In our simulations an expansion rate of 3× 10−6 to
1× 10−5 times the thermal velocity is used. The resulting packings are essentially
free of orientational order6. Thus, our packings are representative of the random
close-packed (or maximally random jammed) state for the respective aspect ratio
[54, 56]. Particles with aspect ratios between 0.7 ≤ α ≤ 1.4 are analyzed. For each
aspect ratio, at least 100 random packings are created.

2.2.2 Discrete Element Simulations (DEM) of frictional particles

Static packings of frictional sedimented ellipsoids with
different boundary conditions.

Simulations of jammed static
structures are obtained by dis-
crete element simulations (DEM)
using the implementation devel-
oped at CSIRO [45, 55] in co-
operation with Gary Delaney.
DEM simulations allow for the
simulation of friction and grav-
ity. The particles are virtually
sedimented in a viscous fluid.
The simulations are performed
in a square box with periodic

boundary conditions in x-y direction (gravity in z-direction) as well as for ellip-
soid settling in a cylindrical container. In total 120 configurations, of 9323 ellipsoids
with aspect ratios between 0.3 and 1.0 (spheres) are generated. By varying the friction
coefficient of the particles and viscosity of the fluid different packing fractions are
achieved. The loosest packings are obtained for particles with very high friction

6 The nematic order parameter tensor is close to isotropic, its largest eigenvalue is smaller than 0.04.
See Ref. [5] page 130 ff. for details.
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Chapter 2. Tomographic experiments and simulations of ellipsoid packings

coefficient, see sedimented loose packing (SLP) in Fig. 1.3 and Fig. 4.6. Packings of
frictionless particles result in the densest packings [55].

2.2.3 Equilibrium fluids – Molecular dynamics & Monte Carlo

Equilibrium fluid
of ellipsoids.

As reference data, equilibrium configurations of hard-core
ellipsoids in the fluid phase are generated. No external forces,
such as gravity, are applied to the particles and the config-
urations are in general not jammed. The configurations are
obtained by event-driven molecular dynamics simulations
[52] (MD, the same data sets as in ref. [53]). For low densities,
because of their faster convergence, canonical Monte Carlo
simulations are performed (MC, [160]). All datasets contain
1024 particles and are performed with periodic boundary con-
ditions. In the limit of vanishing density φg → 0, where the

typical distance between particles is large compared to the particle size, the dis-
tributions of center points coincides with the Poisson point process [P4][P14], see
Fig. 4.6.
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3 Quantitative morphology of spatial
tessellations and granular assemblies

This chapter presents an overview of the analysis tools used in this work. These tools
include Set Voronoi diagrams as an extension to the conventional Voronoi diagram
for non-spherical particles, Minkowski Tensors as robust analysis tool to characterize
shape, and a local density resolved analysis which can reveal differences in structure
which are not captured by global averages.

3.1 Set Voronoi diagrams as tessellations for non-spherical
particles

Phil. Mag. 2013
The Voronoi diagram is a fundamental geometric structure that has found applications
in numerous fields [157]. Its construction in three-dimensional systems has become a
common element of structural analyses of assemblies of spheres, including packing
problems of granular matter [18, 30, 68, 110, 115, 133, 155, 176, 184, 185, 209, 211]
[P4], glass-forming systems [9, 159, 187], fluid systems [67, 124, 172] [P14], etc. Other
applications include random foam structures [121, 122] or ordered systems such as
crystal chemistry [21, 33].

For a set of spherical particles, the most common way
to tessellate the void space between the particles is the
conventional Voronoi tessellation, by which the Voronoi
cell of a particle is that of its centre point. Given a set of
points, the Voronoi cell of a point is the region of space that
is closer to this point than to any other with respect to the
Euclidean distance d [157]. In condensed matter physics,
this tessellation is also known as the Wigner–Seitz unit cell.

Conventional and Set Voronoi tessellation for ellipsoids

In most applications, the con-
sidered particles are not spher-
ical. Shapes of interest are, for
example, ellipsoids [53, 55, 56,
57, 71, 137] [P1][P4][P5], tetra-
hedra [80, 150], supercubes [54]
and pear-shaped particles [65].
For these particles, the conven-
tional construction of the point
Voronoi diagram fails, because
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Chapter 3. Quantitative morphology of spatial tessellations and granular assemblies

Figure 3.1: Difference between the conventional Voronoi and the Set Voronoi cells. (left) A Sphere
and its Voronoi cell (middle) Set Voronoi cell of an ellipsoid with curved edges and facets.
(right) Subset of a packing of ellipsoids with Set Voronoi tessellation. Pictures are taken from
Ref. [P7]. A flip-book movie of this rotating packing can be found in the right top corner of
this work.

facets of the cell may intersect with the particles. The same problem exists for the
case of polydisperes particle packings. For these cases, we extend the conventional
Voronoi construction to the Set Voronoi tessellation. The Set Voronoi cell of a given
particle is composed of all points in space that are closer to the surface (as opposed
to the centre) of the given particle than to the surface of any other. For the case of
monodisperse spheres, this definition reduces to the conventional Voronoi diagram.
Fig. 3.1 shows the difference between conventional Voronoi cells for monodisperse
spheres with flat facets and Set Voronoi cells with curved facets and edges. For the
case of poly-disperse spheres (or disks), any facet in between two spheres of different
radii is curved. This is different to the Laguerre tessellation (or weighted Voronoi
diagram) which has flat facets [13, 20, 127], and which has been used to construct
cells around poly-disperse spheres e.g. as initial configurations for fluid foams [122].

In the literature this generalization is also known as navigational map or Voronoi S
regions [133, 134, 144]. In the computational geometry literature, these constructions
are often called generalised Voronoi diagrams (or curved or non-affine Voronoi diagrams
[36]), or Area Voronoi diagrams for the planar case [157]. The Set Voronoi construction
is a special case of the medial axis representations of non-convex objects [34, 182]. In
mathematical morphology, it is referred to as skeleton by zone of influence [162].

In the following we describe two algorithms to calculate Set Voronoi tessellations
for arbitrary shaped objects. These algorithms are an extension to Voronoi algorithms,
which have been proposed for simple objects (such as lines planes, spheres, cylinders,
sphero-cylinders, poly-disperse spheres etc.) [83, 85, 133], and, as approximations,
for sets that include polyhedra using on octrees [35].
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3.1. Set Voronoi diagrams as tessellations for non-spherical particles

Figure 3.2: Construction of the Set Voronoi Diagram by discretizing the surface of the particles. The
Set Voronoi cell is approximated by the union of the point Voronoi cells of all triangulation
vertices for each particle. Pictures are taken from Ref. [P6].

Most recently, Baule et al [27] have described an exact construction for the Set
Voronoi diagram of particles that can be represented by unions or intersections
of spheres, as dimers or trimers. For ellipsoids, spherocylinders and tetrahedra
approximations are presented. This work is of particular interest as it lends itself to
analytical treatment of some aspects of the Voronoi diagram.

3.1.1 Algorithm for parametrizable particles

If the surface of the particles is known, for example from numerical simulation data,
we can use the following triangulation approach. At first, we discretize the particles’
bounding surfaces by a sufficiently dense set of vertices. Second, we compute the
conventional point Voronoi diagram for all those vertices. Finally, the Set Voronoi
cell of a given particle is approximated by the union of the Point Voronoi cells of
all triangulation vertices of that particle. An illustration is shown in Fig. 3.2. This
method allows us to calculate the Set Voronoi diagram for all kinds of particles; for
example, tetrahedra, supercubes, cuboids, pear-shaped particles, which are currently
under investigation.

Note, that this algorithm is closely related to Voronoi-based medial axis algorithms,
developed for 3D space in [182]. The exterior medial axis of a given body K is the
locus of all points in the complement (i.e. the outside) of K that are equidistant to two
distinct points on the bounding surface ∂K. The facets of the Set Voronoi diagram of
a set of disjoint objects represents precisely the medial axis (or surface) if the particles
are convex. In this sense, our algorithm is a special case of the medial axis algorithm.

3.1.2 Set Voronoi diagram for tomographic (voxelized) images

Experimental data mostly consists of voxelized 3D images, for example from con-
focal microscopy or tomography. The computation of Voronoi domains directly in
voxelized space is an alternative to the triangulation approach discussed above. No
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Chapter 3. Quantitative morphology of spatial tessellations and granular assemblies

detected particles Set Voronoi cells

Figure 3.3: Slice of a 3D image of a packing of Ottawa sand.

parametrizations of the particle shapes in the sample are required. The resolution of
the resulting 3D Voronoi image is limited to the resolution of the input data.

Here, we describe an algorithm, based on a Watershed transform [146, 149, 169],
which is used to identify the space around each particle that correspond to the
Set Voronoi cells. Such algorithms have already been used for related problems in
granular materials [171, 192].

We start with a voxelized 3D image where all the grains are detected and labeled
individually. An example is presented in Fig. 3.3 (left), which shows the detected
grains of a packing of Ottawa sand. The voxel-based approach uses the Euclidean
distance map D(x) of the void space in between the set of the particles7. We exploit
the fact that the facets (in 3D) or edges (in 2D) of the Set Voronoi cells represent
ridge lines of the Euclidean distance map D(x). D(x) is a continuous function that
increases in the direction away from the nearest particle. The gradient |∇D(x)| = 1 is
differentiable for all points x except along the Voronoi cell facets (in 3D) or edges (in
2D) where the gradient direction is discontinuous; these are the ridge lines. For any
given particle, its basin is composed of all points in space from which descent along
the gradient directions ∇D leads to points on the boundary of that given particle,
hence the name watershed algorithm. The basin of each particle is its Set Voronoi
cell. As an example, Fig. 3.3 (right) shows the result of a voxel-based Set Voronoi
tessellation of a packing of Ottawa sand grains.

7The Euclidean distance map D(x) assigns to each space point (voxel) the Euclidean distance to the
nearest (boundary) point of the set of particles.
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3.2. Shape analysis by Minkowski tensors

3.2 Shape analysis by Minkowski tensors8

Springer 2016

NJP 2013

Adv. Mat. 2011

Minkowski Tensors have been developed as robust and anisotropy-sensitive structure
metrics, with a particular strong point being their foundation in comprehensive
rigorous mathematical theory, from integral geometry. The general framework has
been developed in [P7] and earlier works [4, 94, 175]. Publications [P4], [P7], [P13] and
[176] have specifically developed and established their use for granular materials and
the characterization of structural properties, and publication [P7] establishes the link
to the integral geometry literature.

3.2.1 Minkowski functionals and tensors

Minkowski functionals, also known as intrinsic volumes, and Minkowski tensors,
their tensorial generalization, are emerging as commonly used quantities to describe
spatial structures. They have been applied to various applications in physics [11, 12,
122, 138, 142, 143, 173, 174, 176] and biology [24, 28].

For a three-dimensional body K representing the spatial structure, the scalar
Minkowski functionals are, up to pre-factors, the volume W0(K), the area of the
bounding surface W1(K), the integral of the mean curvature over the bounding
surface W2(K) and the topological Euler-Poincaré index W3(K). The use of the en-
compassing term Minkowski functionals for these fundamental shape indices makes
sense in the light of a theorem due to Hadwiger that states (in essence and omitting
mathematical detail) that any motion-invariant conditionally-continuous additive
functional f (K) of a body K is a linear combination of the Minkowski functionals [79].
In this sense, mathematical theory imposes that scalar Minkowski functionals are
the relevant shape indices w.r.t. to physical properties represented by such additive
functionals.

By definition, the scalar Minkowski functionals are rotation-invariant, which makes
them not explicitly sensitive to directional and anisotropic features of morphology.
This fact motivates their generalization to tensorial shape indices which are called
Minkowski tensors, capable of quantifying anisotropic and orientational aspects of
morphology and geometry.

Here, we focus on the generalization to Minkowski tensors of rank two, while in
principal, Minkowski tensors can be defined for arbitrary rank. An intuitive general-
ization of the scalar functionals W0 ∝

∫
K dV and Wν(K) ∝

∫
∂K gνdA (for ν = 1, . . . ,3)

is achieved by introducing tensor products of position vectors r and surface normal
vectors n into the integrals (g1 = 1. g2 and g3 are the point-wise mean and Gaussian
curvature of the bounding surface ∂K, possibly their discrete equivalents applicable to
polyhedra). For spatial geometries there are six relevant linearly-independent tensors.

8This section contains verbatim extracts of ref. [P13] of which I am co-author.
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motion covariant motion invariant

W2,0
0 (K) :=

∫
K

r⊗ r dV, (3.1)

W2,0
1 (K) :=

1
3

∫
∂K

r⊗ r dA, (3.2)

W2,0
2 (K) :=

1
3

∫
∂K

H(r) r⊗ r dA, (3.3)

W2,0
3 (K) :=

1
3

∫
∂K

G(r) r⊗ r dA, (3.4)

W0,2
1 (K) :=

1
3

∫
∂K

n⊗ n dA, (3.5)

W0,2
2 (K) :=

1
3

∫
∂K

H(r) n⊗ n dA. (3.6)

Here, H(r) = (κ1 + κ2)/2 and G(r) = (κ1 κ2) are the mean and Gaussian curvature
of ∂K and ⊗ the tensor product defined as (a⊗ a)ij = aiaj for any vector a. Note that
the labels ν, r, s define different tensors and are not the indices of its components; the
components are indexed by i, j and denoted (Wr,s

ν )ij. The label ν represents the same
integral types as for the scalar Minkowski functionals (ν = 0 the volume integral,
ν = 1 the surface integral, ν = 2 the mean-curvature weighted surface integral,
etc) and r and s the tensorial powers of the position and surface normal vectors,
respectively. Generalizing Hadwiger’s statement, Alesker’s theorem [4] states, that
all motion-covariant, conditionally continuous, and additive tensorial functionals
F(K) can be expressed as a linear combination of the Minkowski tensors listed above
and the scalar functionals multiplied by the rank-two unit tensor. This list of tensors
has also been shown to be linearly independent [94].

In the following we focus on the interpretation of the two mostly used tensors in
this work, W2,0

0 and W0,2
1 . The tensor W2,0

0 can be interpreted as a so-called moment
tensor of a solid body K that quantifies the distribution of mass within the body.
It bears resemblance to the tensor of inertia I(K) =

∫
K(−r ⊗ r + |r|2 E3) dV =

−W2,0
0 + tr(W2,0

0 )E3 with the three-dimensional unit matrix E3 and tr denoting the
trace of a matrix and depends on the chosen origin 0. In contrast, the tensors W0,2

1
is translation-invariant and the morphological interpretation is the orientational
distribution of surface patches ∂K. For example, given a rectangular prism of size
Lx × Ly × Lz aligned with the coordinate axes; the tensor W0,2

1 is diagonal with
components (W0,2

1 )xx ∝ Ly, (W0,2
1 )yy ∝ Lx and (W0,2

1 )zz ∝ Lz, reflecting the portions
of interface oriented along the three orthogonal directions. An illustration for a more
general body is shown in Fig. 3.4.

Minkowski functionals are based on integral geometry and fundamental measure
theory in mathematics. They are very robust and versatile and can be used in many
applications. Further details can be found in Refs. [175], [P7] and [P13].

As part of this thesis and other work, a computer programm called Karambola was
developed. Karambola is able to calculate Minkowski Tensors of three-dimensional
bodies and surfaces. It is developed at the Institute of Theoretical Physics in Erlangen,
with particular contribution by Sebastian Kapfer and Gerd Schröder-Turk, and is avail-
able as free software (http://theorie1.physik.uni-erlangen.de/karambola).
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3.2. Shape analysis by Minkowski tensors

W2,0
0 (K) :=

∫
K r⊗ r dV W0,2

1 (K) := 1
3

∫
∂K n⊗ n dA

moment tensor solid normal distribution

Figure 3.4: Geometric interpretation the Minkowski tensors for 3D polyhedral bodies. W2,0
0 can be

interpreted as the moment tensor of a solid body K, quantifying the distribution of mass.
W0,2

1 represents the distribution of normals of the surface ∂K. Pictures are taken from
Ref. [P13].

3.2.2 Anisotropy indices based on Minkowski tensors

The measurement of the order and crystallinity of a sphere packing is a longstand-
ing problem. Different methods have been devised, i.e. the widely used bond-
orientational order parameter Ql defined by Steinhard et. al [189] or methods based
on Minkowski tensors [110, 176] [P7][P13] which are used in this work. These order
metrics are all defined with reference to the known densest crystal phases of spheres.
The advantage of using Minkowski tensors is that they vary continuously in position
of the particles in contrast to other order parameters like Ql , where slight changes in
particle positions can lead to a large change of the structure metric [147].

While the natural format of Minkowski tensors is, as the name implies, tensorial, it
is more convenient to reduce them to scalar indices. The degree of anisotropy of a
given body K (in our case a Voronoi cell) is conveniently expressed as the ratio βr,s

ν of
minimal to maximal eigenvalue of the Minkowski tensor Wr,s

ν .

βr,s
ν :=

|µmin|
|µmax|

∈ [0,1] (3.7)

βr,s
ν is 1 (and K said to be isotropic) for any shape that has statistically identical mass

distribution in any set of three orthogonal directions; this includes the sphere, but
also regular polyhedra and the FCC, BCC and HCP Voronoi cells [110]. Small values
of βr,s

ν indicate elongated (anisotropic) cells. The eigenvectors to the eigenvalues,
referred to as ei are indicators of the orientation of the Voronoi cell K. Fig. 3.5 shows
a Set Voronoi cell of an ellipsoid and the eigensystem of the volume tensor W2,0

0 .
Note however the difference of βr,s

ν to measures of asphericity [187] that quantify
deviations from a spherical shape.

Structural information of a packing can be gained from the average anisotropy
index 〈β0,2

1 〉 = ∑N
i=1 β0,2

1 (Ki)/N, which is the arithmetic mean over all Voronoi cells
Ki of the packing. For spheres, the average anisotropy index of the densest ordered
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Figure 3.5: (left) Particle in its Set Voronoi cell. (right) Eigensystem of the cell.

structures, which are the crystalline FCC and HCP packing, is 〈βr,s
ν 〉 = 1. Disorder

is quantified by a deviation from ordered reference structures. Hence, the more
disordered a packing of spheres, the smaller is the anisotropy index 〈βr,s

ν 〉. For most
non-spherical particles, the densest ordered structures are unknown and are missing
as reference structures. Nevertheless, changes of the anisotropy index of a packing
can reveal interesting properties, see section 4.3.

Alternative methods for the characterization of anisotropy exist. Anisotropy indices
qr derived from spherical Minkwoski tensors of arbitrary rank r can be used to
characterize spatial strucutres [108, 147]. Kraynik et al. [121] and others [66] described
3D foam cells by anisotropy indices derived from the normal vector distribution of the
cells, similar in spirit to the Minkowski tensors. For porous media, anisotropy indices
derived from the mean intercept length tensor MIL are used for the investigation of
the micro-structure of bone, see e.g. Refs. [84, 152, 204, 206]. Deformations of cellular
or granular material have been quantified by means of the so-called texture tensor
[19, 78], which has been used to characterize anisotropy, e.g. for Antarctic ice crystals
[63] and liquid foam cells [99]. Further anisotropy indices are based on wavelet
analysis [191], the orientation of volumes [153], or star-volumes [111, 152]. Ref. [114]
compares of anisotropy indices based on mean-intercept length, star-volume and
star-length distributions.

3.3 Local (density-resolved) analysis - Looking at the
particle scale

EPL 2015
To get a deeper insight and understanding of packings of particles it is useful to not
only look at global averages but to also look on the particle scale. Here, we use a local
density-resolved analysis based on the idea that the physical mechanisms underlying
granular matter occur at the particle scale. A similar approach has been used for the
analysis of sphere packings [17, 176]. This analysis provides information how local
structure changes depending on local packing fraction.

Figure 3.6 illustrates the concept of the local (or density-resolved) analysis. Particles
are grouped by their local packing fraction φi, i.e. into sets S(φl) composed of all
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(a) Voronoi Diagram: cells colored according to the
local packing fraction φl .

(b) Local packing fraction distribution
P(φl) = P(φl | φg).
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(c) Shape distributions P(β) = P(β | φl , α, X) for
cells with approx. the same local packing fraction.

(d) Average shape parameter 〈β〉(φl) for cells with
approx. the same local packing fraction.

Figure 3.6: Illustration of the density resolved analysis. Pictures are taken from Ref. [P4].

particles i with φl − ∆
2 ≤ φi < φl +

∆
2 for φl = ∆, 2∆, 3∆, . . . with a small interval ∆

(∆ = 0.1 in Fig. 3.6). The function P(β | φl , α, X) is the probability distribution of
the shape measures β, restricted to the cells in S(φl), i.e. to those with local packing
fraction φl . The average 〈β〉(φl , α, X) =

∫
β P(β | φl , α, X) dβ over all cells in S(φl)

provides information on how local structure changes depending on local packing
fraction φl . In general, both P and 〈β〉 depend on further parameters including the
aspect ratio α and other variables X, which can be for example the packing protocol
or the friction between the particles.

29





4 What can we learn from the Voronoi
diagram of hard particle systems?

In packings of particles, the microscopic interactions are encoded in the local structure
comprising a particle and its immediate neighbors. Voronoi diagrams are a conve-
nient means to capture, geometrically, the local structure of the particles and their
neighborhood. In this chapter, an established model for the Voronoi volume distribu-
tion in sphere packings is extended towards ellipsoids [P1]. Furthermore, the Voronoi
cell shapes of jammed packings of ellipsoids are quantified by Minkowski tensors.
We show that a local analysis reveals non-universalities, which are not captured by
global averages [P4].

Voronoi tessellations are widely used to describe the structure of granular assem-
blies, such as jammed granular packings [18, 30, 61, 68, 70, 110, 115, 133, 155, 176, 184,
185, 209, 211] [P4], glass-forming systems [9, 159, 187] or fluid systems [67, 124, 172]
[P14]. Commonly investigated parameters are the Voronoi cell volume and surface
area, the number of Voronoi facets or the shape of the Voronoi cells, and correlations
thereof.

Short-range spatial anticorrelations between Voronoi volumes are observed in
dense 2D disc packings [211] and maximally random jammed packings [115], which
do not occur in the Voronoi tessellation of the Poisson point process. This indicates
that in dense jammed packings, large Voronoi cells are accompanied by small cells,
and vice versa.

In jammed packings of spheres [18] and in dense and glass-forming liquids [187]
distributions of Voronoi volumes were found to be universal, but the theoretical mod-
eling of such distributions remains an open problem. For non-interacting particles
(ideal gas, Poisson point process), the distribution of Voronoi volumes is almost per-
fectly fit by a three-parameter Gamma distribution [89, 115, 128, 157]. No fitting curve
of comparable accuracy exists for interacting particles, let alone jammed packings of
particles considered in this work.

A simple statistical mechanics model for the Voronoi cell volume distribution of
packings of spherical particles was proposed by Aste et al. [14, 18]. In their model,
the probability density f (V) is given by a so-called k-Gamma distribution

f (V) =
kk

(k− 1)!
(V −Vmin)

k−1

(〈V〉 −Vmin)k exp
(
−k · V −Vmin

〈V〉 −Vmin

)
. (4.1)

This analytic model yields the full distribution of the Voronoi cell volumina, but cru-
cially depends on the minimal cell volume Vmin. Note that Vmin is the smallest
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possible local arrangement, which is in general different from the densest crys-
tal configuration. For spheres, Vmin is known, which is the icosahedral cluster.
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Plot adaped from Ref. [18] with permission from EPL.

The parameter k has been
linked to a granular tempera-
ture. It was found that k varies
between 11 and 15, which
agrees with the typical num-
ber of Voronoi neighbors in
sphere packings [14].

To extend this model for
packings of other particle
shapes, Vmin for these particle
shapes is needed. In the fol-
lowing section we determine
Vmin(α) for ellipsoids, which
was unknown prior to our
work [P1]. With the knowl-
edge of the densest structures we can rescale the Voronoi volume distributions onto
the single-parameter family of k-Gamma distributions, see section 4.2.1.

A similar universality is observed for the rescaled probability density of the
quadron volume in 2D disc packings [140]. A k-Gamma distribution with k between
three and four is a good representation as well.

4.1 Cuddling ellipsoids - locally densest structures

PRX 2016
Here, we investigate the locally densest structures of uniaxial ellipsoids 1 : 1 : α, as
a generalization of the classical kissing problem and motivated by their relevance
for understanding Voronoi volume distributions. The classical kissing problem in
mathematics asks how many equal sized spheres can simultaneously touch a central
sphere [48, 177]. This question dates back to Isaac Newton, but it took more than
250 years till it was proven that 12 is the correct answer [177]. The most symmetric
arrangement of the spheres is the icosahedral cluster.

In order to generalize this problem to prolate and oblate ellip-
soids, we search for the configuration of a central ellipsoid and
its N nearest neighbors, that minimizes the volume of the central
particle’s Set Voronoi cell Vcell. This is equivalent to maximimiz-
ing the local packing density φl = Vα/Vcell, where Vα = 4πα/3
is the particle volume. In the solution of this modified problem,
the particles do not necessarily have to touch (kiss) the central
particle. Therefore we will refer to it as the cuddling problem.

We define Vmin(α) as the minimal Voronoi cell volume for each aspect ratio, and
φmax(α) as the corresponding local packing fraction. The central particle is sur-
rounded by N neighbor particles, which have 3 translational and 2 rotational (uniaxial
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Figure 4.1: Dense local structures of ellipsoids: Local packing fraction of the central Set Voronoi cell
vs. the aspect ratio α of the particles. We identify several branches of candidate structures
which are distinguished by the number and symmetry of Voronoi neighbors. The plot
symbols mark the number of neighbors (N = 12: •, N = 14: N, N = 15: H, N = 17: O),
while different line colors mark a change in symmetry. The solid line at the bottom of the
graph represents the densest-known crystal structure, and “ico” is the icosahedral cluster.
Usually, in the optimal structures, the contact number C is equal to the number of Voronoi
neighbors N. One exception is the oblate N = 14 structure which loses contacts around
α ≈ 0.85 (see kink). Picture is taken from [P1].

ellipsoids) degrees of freedom. The resulting optimization problem in 5N variables is
solved by a simulated annealing scheme, to explore candidate structures, followed
by a downhill algorithm. We identify the presumed optimal structure for each aspect
ratio α and Voronoi coordination number N, see Fig. 4.1.

For spherical particles, the densest local structure is the symmetric icosahedral
cluster. We observe that spherical particles are the worst case of the local packing
problem, which is already known for lattice packings [106, 107]. As the particles
become more aspherical, a general trend towards denser structures exists and the
number of neighbors N to form the optimal structures increases. Most of the densest
motifs we discover exhibit a high degree of symmetry, inducing a natural classification
by crystallographic point groups, see Ref. [P1]. For very oblate ellipsoids, α . 0.76,
fifteen neighbors without any obvious symmetry pack densest around the central
particle (labeled N = 15 in Fig. 4.1). We conjecture that for even larger asphericities
than considered here, the densest structures are typically disordered without any
symmetries.

This work offers the opportunity to extend the analytic model for the Voronoi
volume distribution of packings of spherical particles proposed by Aste et al. [14, 18]
towards ellipsoids, see next section.
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Figure 4.2: Distribution of rescaled Set Voronoi cell volumina in random ellipsoid packings. Data for
different aspect ratios α, compared with two k-Gamma distributions with k = 13 and k = 17.
The inset shows the same data on a linear scale.

4.2 Voronoi Volume distributions
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4.2.1 Extending the k-Gamma model to non-spherical particles

While Voronoi diagrams are a powerful tool for characterizing granular packings,
there is currently no established theory for aspherical particles. Aste et al. proposed
the so called k-Gamma model, an analytic model for spherical particles [14, 18] which
predicts, under simplifying assumptions9 the full distribution of Voronoi volumina,
see Eq. (4.1). The shape of the k-Gamma distributions strongly depend on Vmin, the
locally densest arrangement, which was previously unknown for ellipsoids [P1].

Combining the results for Vmin(α) presented in section 4.1 and the k-Gamma model,
we can now predict the full distribution of Voronoi volumina, with only a single
parameter k. We test the model by analyzing dense disordered packings of monodis-
perse ellipsoids generated with the Lubachevsky-Stillinger-Donev protocol [58, 59]10.

Fig. 4.2a contrasts our data for dense random packings with the predictions from
the k-Gamma model. Both for spheres and ellipsoids, the model curves satisfactorily
reproduce the skewed distributions of the data. Upon closer inspection, however, the
data exhibit a shoulder at small volumes which deviates from the k-Gamma curve.
The position of the shoulder is lowest for spheres, and shifts into the main peak
(larger x) for aspherical particles. A similar feature is also present in packings of
bidisperse disks (see Fig. 2 and 3 in Ref. [129]) and random-close-packed colloidal

9Aste et al. assume each Voronoi cell being composed of k elements which contribute independently to
the Voronoi cell volume Vcell. The volumes of the elements sum up to the total cell volume Vcell. An
assumed minimal elementary cell volume results in the minimal Voronoi cell volume Vmin.

10These packings are representative of the random close-packed (or maximally random jammed) state
for the respective aspect ratio [54, 56] and are in agreement with published tomography experiments
and numerical sedimentation data for oblate ellipsoids [P4].
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4.2. Voronoi Volume distributions

particles (see Fig. 4 in Ref. [125]).
The origin of the shoulder contribution can be identified by fitting an unnormalized

k-Gamma probability density to the upper portion of the data. We find an excess
of Voronoi cells at low volumes, indicating that there are ‘attractor’ motifs at these
packing fractions which are preferentially formed. Resolving the local packing frac-
tion distribution for each Voronoi coordination number N shows that this excess
mainly stems from N = 12 cells which show a bimodal φl distribution (Fig. 4.4,
bottom row), see next section. Evidently, the attractors which cause our packing to
deviate from the k-Gamma model are the N = 12 motifs for the relevant aspect ratio.
Excluding such specific packing motifs, the k-Gamma model provides useful and
accurate parametrization of dense frictionless ellipsoid packings.

The accordance between k and the average number of neighbors which was found
in packings of spheres, does not exist in packings of ellipsoids. We find that k
increases with asphericity up to 17.4 for our most aspherical particles (α = 1.4) while
the average number of Voronoi neighbors stays almost constant, 〈N〉 ≈ 14. A table
with values for all aspect ratios can be found in Ref. [P1].

4.2.2 Distributions of local packing fraction

PRX 2016
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Figure 4.3: (top) Probability distribution of local packing frac-
tions φl of dense and loose jammed static ellipsoid
packings. The aspect ratios of the particles are be-
tween 0.4 ≤ α ≤ 1.0. (bottom) Collapse of the
standard deviations σ.

A surprising universality is dis-
covered by looking at the local
packing fraction φl = Vparticle/Vcell

in jammed granular packings
of spheres and ellipsoids. f (φl)
is the probability density func-
tion to find a particle with φl
in a given packing. An integra-
tion over f (φl) will result in the
average local packing fraction
〈φl〉 =

∫ 1
0 φl f (φl) dφl .11

Fig. 4.3 (top plot) shows the
probability distributions of the
local packing fraction f (φl) for
packings of ellipsoids with dif-
ferent aspect ratios α. When
plotting the standard devia-
tion σ of each distribution
against the local packing frac-
tion a collapse is observed, see

11Note the difference between the average local packing fraction 〈φl〉 and the global packing fraction,

which is defined as φg =
∑ Vparticle

∑ Vcell
with ∑ being the sum over all particles in the packing. For

monodisperse packings, φg is the harmonic mean of the local packing fraction φl . The difference
between φl and 〈φl〉 is very small in the jammed particle packings cosidered in this work.
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Fig. 4.3 (bottom plot). Data in this plot represents jammed static structures accross
the range of accessible packing fractions for oblate ellipsoids 0.4 ≤ α ≤ 1 from
different experimental packing protocols and simulations of sedimenting ellipsoids
[P4]. A similar universality is observed in two dimensional dense configurations of
bidisperse discs [163].
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Figure 4.4: Distribution of Voronoi neighbor count N and local
packing fraction φl . The bold vertical bars indi-
cate the densest local structures for each N (see
Fig. 4.1). The vertical dashed line marks the dens-
est known crystalline packing φcry [57], and the
triangular tics on the axes mark the global packing
fraction and mean Voronoi neighbor count of the
dense disordered packings. Bottom row: Marginal
distributions of the above for different N. Image
adapted from [P1].

With high statistics data gen-
erated using the Lubachevsky-
Stillinger-Donev protocol [58,
59], we can resolve the tails
of the distribution which are
not yet accessible in experiment.
Fig. 4.4 displays the frequency
of Voronoi cells in our dense dis-
ordered packings with a given
coordination number N and lo-
cal packing fraction φl . It can be
observed that the densest clus-
ters in a random packing readily
exceed the densest known crys-
tals packings of packing fraction
φcry, indicated by the dashed
line. The maximal local pack-
ing fractions for each Voronoi
coordination number found in
Fig. 4.1 are indicated by ver-
tical bars. At small aspheric-
ity, the densest local structure
is the icosahedral cluster. It is
known that random packings of
spheres contain distorted variations of icosahedral clusters [7], while the probability
for perfect ico clusters vanishes [176]. We can confirm these results for packings of
moderate asphericity.

More aspherical ellipsoids (α ≤ 0.8 and ≥ 1.25) could pack denser with fourteen
or more neighbors [P1], see Fig. 4.1. As Fig. 4.4 demonstrates, such structures are not
formed in significant amounts. Instead, the densest clusters are again N = 12 cells,
which turn out to be distorted variations of the N = 12 optimal structures.

By looking looking at the individual packing fraction distributions of each coor-
dination number N, a bimodal distributions for the N = 12 cells is observed, see
Fig. 4.4 (bottom row) This bimodality is linked to the shoulders in the Voronoi vol-
ume distributions, see section 4.2.1, and stems from an excess formation of distorted
icosahedral clusters.
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4.3 Shape and anisotropy

EPL 2015
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Characterizing cell shapes, in our case Voronoi cells, is a commonly used way to
describe spatial structures. Scalar quantities, such as the cell volume, surface area,
integrated curvatures or the isoperimetric ratio, have widely been used for charac-
terizing spatial structure. Example are the structure of maximally random jammed
sphere packings [115], foam cells [122] or random tessellations [128] [P2].

Treating the scalar quantities as the leading term of a shape description of the
Voronoi cells, we now proceed to higher-order terms. Here, we use the tensorial
shape measures W2,0

0 and W0,2
1 , introduced in section 3.2, to characterize cell shape.

The scalar indices β2,0
0 and β0,2

1 , derived from these tensors, are used to quantify the
anisotropy of the cells.

We analyze the structure of jammed packings of spheres and ellipsoids and com-
pare them to reference data of equilibrium fluid configurations. A density-resolved
analysis of these packings gives further insight to the local structure and reveals
non-universalities which are not captured by the global averages.

4.3.1 Global averages

4.3.1.1 Packings of spheres

Here, we analyze the structure of different assemblies of spherical particles, from
fluid configurations without gravity to jammed static packings generated under sedi-
mentation. The structure is quantified by the average Voronoi cell shape anisotropy
〈β0,2

1 〉, see section 3.2.2 for details.
Fig. 4.6 presents a ”phase diagram” where 〈β0,2

1 〉 is displayed as function of global
packing fraction φg. Jammed configurations generated by DEM simulations (see
section 2.2.2) of sedimenting ellipsoids are represented in red. Our results are in
quantitative agreement with previously published data [176] for simulations and
experiments of jammed sphere packings (gray stars), where packings below and
above the RCP limit have been created. All configurations become more isotropic
upon compaction, i.e. β0,2

1 increases with increasing φg and the cells becoming in
average less elongated, approaching the isotropic FCC and HCP structures with
β0,2

1 = 1 for φg → φfcc/hcp ≈ 0.74.
As a reference system, we analyze data of equilibrium fluid configurations which

have been generated by two different methods, a Monte Carlo (MC, [120]) and an
event-driven molecular dynamics simulation (MD, [165]). In general, at a given
global packing fraction φg, the equilibrium configurations are more isotropic than the
jammed packings. These configurations show a discontinuity in 〈β0,2

1 〉 at the hard
spheres phase transition, from a disordered to a ordered state, with the ordered state
being more isotropic. From 0.494 . φg . 0.545, a coexistence region exists. For
vanishing density φg → 0 the shape anisotropy corresponds to the value 〈β0,2

1 〉 ≈ 0.46
of the Poisson point process [P14]. More information about the simulation method
and the detailed analysis can be found in Ref. [P14].

37



Chapter 4. What can we learn from the Voronoi diagram of hard particle systems?

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.78

0.8

0.58 0.6〈β
0,

2
1
〉

φg

eq. MC
eq. MD

jammed data from [176]
sedimented DEM

FCC/HCP
Visscher-Bolsterli

Figure 4.5: Average anisotropy index 〈β0,2
1 〉 as function of the global packing fraction φg for equilibrium

configurations of spheres [P14], static jammed sphere packings [176] and the FCC/HCP
crystal. The inset shows data generated with the Visscher-Bolsterli algorithm for spheres
on an inclined plane [P3]. The two sketches on the left-hand side illustrate the anisotropy
parameter.

The inset in Fig. 4.5 shows a system where particles are sedimented on an inclined
surface simulated with the Visscher-Bolsterli algorithm [203], see Ref. [P2] for details.
In this algorithm, particles are sedimented sequentially and stick to their position once
they reached their potential minima or the inclined surface. By changing the slope of
the surface from 0◦ up to≈ 52◦ degree, the packing density is varied. For angles above
52◦ degrees, no stable packing can be achieved. Interestingly, these configurations
show a higher increase of 〈β0,2

1 〉 when varying φg than the corresponding jammed
packings. The detailed analysis of packings generated with this simulation method
can be found in Ref. [P3].

4.3.1.2 Packings of ellipsoids

We investigate the influence of particle shape to the packing structure by using
ellipsoids. By varying the aspect ratio α of the particles, the shape can be changed
continuously from spherical to very elongated. In this section, the Voronoi cell shape
analysis is applied to equilibrium configurations and jammed packings of oblate
ellipsoidal particles. We use the Set Voronoi construction because we are analyzing
non-spherical particles. For characterizing shape, we use the average anisotropy
measure 〈β2,0

0 〉 based on the volume moment tensor, because the volume tensor is
more robust against discretization errors of the surface of the Set Voronoi cell surface.

We analyze data of equilibrium ellipsoid fluids obtained by MC and MD simula-
tions (for φg below the transition point to the nematic phase), and data of experiments
and simulations of jammed random ellipsoid structures. Details about the simulation
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Figure 4.6: Average anisotropy index 〈β2,0
0 〉 of the Set Voronoi cells of packings of ellipsoids as function

of φg for equilibrium ellipsoid configurations, static jammed ellipsoid and crystal packings.
The two sketches on the left-hand side illustrate the anisotropy parameter. Dashes on the
right-hand vertical axis and ellipsoid sketches aside mark the anisotropies of the particles
themselves, i.e. β2,0

0 evaluated for a particle rather than its Voronoi cell.

methods and experimental setups are given in chapter 2. As reference two dense
crystalline configurations, the stretched FCC obtained by scaling the x coordinate of
the FCC sphere packing α, and the structure discussed by Donev et al. [57]) are shown.
Fig. 4.6 shows the average Voronoi cell shape anisotropy, quantified by 〈β2,0

0 〉 plotted
as function of the global packing fraction φg.

For equilibrium fluids in the limit of vanishing density φg → 0, where the typical
distance between particles is large compared to the particle size, the Voronoi cell
shape does not depend on the shape of the particles. In this case, the shape anisotropy
corresponds, as shown before for spheres, to the value of the Poisson point process,
for the case of β2,0

0 ≈ 0.37 [P14]. For denser equilibrium fluids [53, 160] the trend of
the Voronoi shape anisotropy measure 〈β2,0

0 〉 is well understood by realising that the
shape of the Voronoi cells becomes more similar to the shape of the particle itself
when φg increases. The dashes on the right hand vertical axis in Fig. 4.6 show the
anisotropy for an ellipsoidal particle itself, rather than its Voronoi cell. When α is
small, the curve 〈β2,0

0 〉(φg) hence decreases, while for larger α, 〈β2,0
0 〉(φg) increases

with φg.
For jammed packings of ellipsoids between the SLP and RCP limit, an excellent

agreement between the tomographic experiments (�, with different preparation
protocols) and the numerical data points from DEM simulations (H, ♦, N) is observed.
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As we know from the previous section, packings of jammed spheres get more isotropic
as the packing fraction φg increases. The same trend is observed for ellipsoids with
aspect ratios close to 1. For ellipsoids with smaller value of α, the slope of 〈β2,0

0 〉(φg)
becomes smaller and eventually even adopts slightly negative values for small α,
such as α = 0.4, supported further by the local analysis in Fig. 4.7 (right plot).

4.3.2 Local analysis reveals differences in dense and loose packings

To get a get a deeper insight into the structure of packings, we use the density-resolved
structure analysis, introduced in section 3.3. We apply this local structure analysis of
β2,0

0 to the data of jammed spheres and ellipsoids, the result is shown in Fig. 4.7. For
the sake of clarity, only results for packings created by DEM simulations are shown.
The following results are in agreement with experimental data, see Ref. [P4].

The local structure analysis reveals a difference in the structure of packings of
spheres and packings of ellipsoids: in sphere packings, the average shape of the
Voronoi cells of a given local packing fraction φl is, as far as it is captured by the
anisotropy index β2,0

0 , almost identical in dense and loose packings. This is evidenced
by the near-collapse of the curves 〈β2,0

0 〉(φl , α = 1, X) for packings of different global
packing fraction. X represents unknown parameters, which can be the packing
protocol or the particle friction. For spheres, 〈β2,0

0 〉 is a function of φl only and is
largely independent of the unknown parameters X.

In ellipsoid packings, illustrated for α = 0.8 in Fig. 4.7a, the curves for different
φg do not collapse. The average 〈β2,0

0 〉(φl , α, X) depends on both α and X. This indi-
cates that packings with low and high φg exhibit differences in their local structures
controlled by α and X. Fig. 4.7b demonstrates the validity of this result for other
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aspect ratios. It is evident that the densest and loosest simulated packings have
different structures, except around α = 1.0 (spheres) and α = 0.6 (close to the densest
random ellipsoid packing). A similar behavior is observed in the local contact number
analysis. The curves of the local contact number analysis collapse while the curves
for ellipsoids start to scatter, see Fig. 3a in Ref. [P1].

These universalities and non-universalities imply the following interpretation
(at least with respect to averages of the volume tensor shape measure and contact
number): Consider a pool of structure motifs, which are the local building blocks of a
packing. For jammed packings of spheres, regardless of the global packing fraction
φl , all local building blocks of a packing stem from the same pool. On the contrary,
for ellipsoids the pool on local building blocks of a packing depends on further
parameters X. Candidates are friction, local order or other measures of anisotropy.
See the detailed explanation of the interpretation in Ref. [P4].
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5 Contact numbers and mechanical
stability

A simple topological and well studied parameter in jammed packings is the average
number of contacts between the particles. Because contacts transmit forces they are
important for the stability of the packing. Here, we analyze the contact numbers of
jammed ellipsoid packings, first as global averages and second in a local density-
resolved analysis. We find that the global contact number can be described by an
ansatz that solely depends on parameters defined on the particles scale, including the
local packing fraction and the aspect ratio of the particles.

While conceptually important and simple, contacts are difficult to detect in exper-
imental data, as experimental images, for example obtained by X-ray tomography,
contain noise [P8]. In simulations, the contact number depends on details of the
contact model, often connected to a numerical cut-off. The contact network highly
depends on the chosen parameters and details of the contact analysis.

Because of their conceptual importance and despite these difficulties in measuring
them, contact numbers are widely studied and investigated in granular packings.

5.1 Global averages

PRL 2015

AIP 2013

Most studies on contact numbers characterize packings by the average (global) contact
number Zg a particle forms with its neighbors. Here, Zg represents the average
number of touching particles which are in geometrical contact. In this sense, Zg is also
known as the geometrical contact number [185]. This is in contrast to the mechanical
contact number which only counts contacts which carry forces. We define the average
contact number Zg as the average over all local contact numbers Zl,i of each particle i:

Zg = 〈Zl,i〉 = ∑ Zl,i
#particles .

Frictionless ellipsoids have been studied numerically with various simulations
[54, 56, 60, 190, 210]. First simulations of the contact numbers of frictionless ellipsoids
were performed by Donev et al. [56, 60], using the Lubachevsky-Stillinger-Donev
protocol, see section 2.2.1. They showed that in amorphous packings of frictionless
ellipsoids the average number of contacts Zg is higher than in packings of spheres.
The rapid increase of Zg when deviating from spheres is due to the additional need
to block the rotational degrees of freedom of the ellipsoids to form jammed packings.
Furthermore, the average contact number of their packings of frictionless ellipsoids is
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less than the number of contacts required for isostaticity12, which is Ziso = 10 (for fully
aspherical: Ziso = 12) [56]. As these packings do not have enough contacts to block all

Contact number of jammed frictionless ellipsoids13

� oblate spheroids, ◦ prolate spheroids,
� fully aspherical ellipsoids.

degrees of freedom, they should
not be mechanically stable. This
apparent paradox has been re-
solved by Donev et al. [60], who
showed that in this analysis the
contacts cannot be treated as
the contacts between frictionless
spheres: contacts with low cur-
vature, that is ”flat” contact, can
block rotational degrees of free-
dom even in the absence of fric-
tion. Discrete Element Simula-
tions (DEM) allow us to sim-
ulate packings of frictional el-
lipsoids, which can form looser
packings with less contacts [55].

Experimental studies of con-
tact numbers have been mostly
performed on spheres. The first studies on contact numbers in jammed packings of
spheres were done by Bernal et al. [31] in 1960, where a packing of frictional spheres
and the distribution of contacts was analyzed with very basic methods. They soaked
packings of ball bearings in japan paint to mark the contacts and counted them after-
wards by a manual dissection of the packing. Newer experimental studies have been
performed by Aste et al. [16, 17] using X-ray tomography imaging of spherical beads.
Sphere packings between a packing fraction of φg = 0.59 and φg = 0.64 have been
analyzed and an increase of the average contact number with the packing fraction
was found. All analyzed packings are hyperstatic e.g. have an average contact number
above 4, which is in agreement with the isostaticity argument. Hanifpour et al. [82]
analyzed the structure of partly crystalline packings obtained in experiments and a
following numerical relaxation by a DEM simulation. They found that the mechanical
contact number (only counts contact which carry force) shows a sharp transition at
the crystallization onset and stays constant, while the geometrical contact number
increases. This suggests the formation of contacts which do not carry forces, to reach
a denser and more crystalline configuration. The distribution of forces inside granular
packings can be experimentally measured in 2D by using photoelastic particles and
placing them between crossed polarizers [25]. Questions of interest to investigate
with this method are for example the distribution of stress inside the packing [92] or
the response to shearing [136].

12A packing is isostatic, when the contacts between the particles form enough constraints to block all
degrees of freedom of the particles.

13Plot reproduced from Donev et al. Ref. [56], with permission from AAAS.

44



5.1. Global averages

4

5

6

7

8

9

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

co
nt

ac
tn

um
be

r
Z

g

aspect ratio α

gl
ob

al
pa

ck
in

g
fr

ac
ti

on
φ

g

aspect ratio α

experiments
DEM limits
LSD limits

Figure 5.1: Average contact number Zg (left) and global packing fraction φg (right) as a function of the
aspect ratio α. Experimental data is from packing experiments, see Ref. [P5] and section 2.1.1
for details. The DEM limits are obtained by sedimented DEM simulations of frictionless
and highly frictional particles, see section 2.2.2 for details. The LSD limits are obtained by
simulations using the Lubachevsky-Stillinger-Donev protocol; data is extracted from Donev
et al. [56].

Packing experiments on packings of ellipsoidal particles were previously only per-
formed with two different types of ellipsoidal particle shapes, uniaxial oblate M&M
candies with α ≈ 0.51 [56, 137, 208] and fully aspherical particles with aspect ratios
1.25:1:0.8 produced by stereolithography [137]. The packings were characterized by
packing fractions and contact numbers.

In this work, we perform a large experimental study on the contact number of
frictional ellipsoid packings. Four different aspect ratios and two different friction
coefficients are analyzed. Details about the experimental setup are described in
section 2.1.1.

Fig. 5.1 displays the average contact number Zg and the global packing fraction φg
as a function of the aspect ratio α. As expected for frictional particles [86, 150, 183],
we find that our ellipsoid packings are all hyperstatic over the whole range of packing
fraction studied. The contact number of all samples is significantly above the isostatic
value of four14. Furthermore, we find that the global contact number Zg depends on
both the global packing fraction φg and the aspect ratio α of the ellipsoids.

The data of our experiments is compared to the densest random packings obtained
by the Lubachevsky-Stillinger-Donev protocol, see section section 2.2.1 and to the
densest and loosest packings obtained by DEM simulations of frictionless and highly
frictional particles sedimenting in a viscous fluid, see section 2.2.2 for details. Fig. 5.1
shows that our data lies within these limits.

14Frictional contacts can fix three contstraints, by blocking one normal and two tangential motions.
A contact is shared between the two particles involved, so per particle each contact provides 1.5
constraints. As each particle possesses six degrees of freedom (3 translational and 3 rotational), at
minimum four contacts are needed to block all of them [200]
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5.2 Local contact analysis

PRL 2015

In the theory of particulate systems known as the jamming paradigm [130, 200], the
basic control parameter is the global contact number Zg, which is a function of the
difference between the global packing fraction φg and some critical value φc. For soft,
frictionless spheres (a practical example would be an emulsion) this is indeed a good
description [112] because additional contacts are formed by the globally isotropic
compression of the particles which also increases φg.

In frictional hard granular media, such as sand, salt or pebbles, a change in the
global packing fraction φg is not achieved by a compression of the particles but by
changing the geometric arrangement of the grains. As we observed in our experi-
ments, if we want to compress a packing of granulates we do not compress them with
a piston but instead tap or vibrate it which changes the geometric structure of the
packing. This suggests that the global parameter, such as the global contact number
Zg and the global packing fraction φg, are a result of the local geometric structure on
the particle scale.

There are some theoretical approaches that have studied contact numbers from a
local perspective: Song et al. [185] used a mean-field ansatz to derive a functional
dependence between Zg and the Voronoi volume of a sphere. This ansatz has recently
been expanded to arbitrary shapes composed of the unions and intersections of
frictionless spheres [26, 27]. For spheres, a comparison between this ansatz and our
theory (see below) is shown in the inset of Fig. 5.2. No data is provided for oblate
ellipsoids considered here in this work.

Secondly, Clusel et al. [46, 49] developed the granocentric model which predicts
the probability distribution of contacts in jammed, polydisperse emulsions and for
frictionless spheres. The key parameters in this model are the available space around
a particle and the ratio of contacts to neighbours. This model is only for frictionless
spheres and hence not applicable for our frictional particles.

Recently, Xia et al. [208] applied the granocentric model to a dense packing of M&M
candies, imaged by X-ray tomography. Their model suggest that particle asphericity
can be treated as a polydispersity effect induced by the particle orientations. Their
model was only applied to a single particle packing and needs further confirmation.

As discussed, the formation of contacts between particles needs to be explained on
the particle level. Thus, we start with an ansatz:

Z(φg, α, X) =
∫

Zl(φl , α, X) f (φl |φg, α, X) dφl (5.1)

The contact function Zl(φl , α, X) represents the local physics i.e. the number of con-
tacts formed by a particle of shape α, inside a Voronoi cell of size φl and potentially
characterized by further locally defined variables X such as friction, fabric anisotropy,
or measures of local order. f (φl |φg, α, X) is the probability distribution to find a
particle with φl in a given packing, see section 4.2.2. As we have shown for ellipsoids,
the standard deviation σ of f (φl |φg, α, X) only depends on φg.
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Figure 5.2: Average local contact number function Zl describing the average number of contact a particle
with local packing fraction φl will form. Averages over all data sets (i.e. different values of
φg) for each aspect ratio. The black dashed lines are parabolic fits according to Eq. (5.3). The
inset shows the theoretical result from Song et al. [185] for spheres compared with our sphere
data. A bin size of 0.02 is used. Figure reproduced from Ref. [P5].

To get an expression for Zl we apply the local analysis, described in section 3.3, to
contact numbers. As the Zl(φl) curves are to first order independent on the global
packing fraction φg and only depend in the aspect ratio15, we average for each aspect
ratio over all experiments with different φg. Fig. 5.2 displays the resulting Zl(φl , α)
curves. Here we have ignored not only φg but also all higher order terms X because
within the resolution of our experiments we were not able to discern between different
possible candidates. In order to obtain an phenomenological description for Zl we
perform for each aspect ratio a parabola fit using:

Zl(φl , α) = a φ2
l + b φl + c (5.2)

Fitting Eq. (5.2) is a purely phenomenological approach, it is justified only by the
absence of any theoretical predictions for frictional ellipsoids. The only analytical
result available is the mean-field ansatz of Song et al. [185] for spheres and is in good
agreement with our data (without any fit parameters) as shown in the inset of Fig. 5.2.

Following our ansatz and using Eq. (5.2), we can write16

Z(φg, α, X) =
∫

Zl(φl , α, X) f (φl |φg, α, X) dφl

= a σ2(φg) + aφ2
g + b φg + c (5.3)

15This independence of the global packing fraction has been previously only shown for spheres [17].
16With E being the expectation value, and VAR the variance it follows:

E[Zl(φl)] = E[a φ2
l + b φl + c] = a E[φ2

l ] + b E[φl ] + c = a
(

VAR[φl ] + (E[φl ])
2
)
+ b E[φl ] + c

= a σ2(φg) + aφ2
g + b φg + c

We neglect the small difference between φg and 〈φl〉.
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Figure 5.3: (left) Average contact number Zg as a function of the global packing fraction φg. Lines
correspond to equation 5.3, which represents the local theory presented here. Experimental
data is from packing experiments, see section 2.1.1 for details. Data is from Ref. [P5]. The
simulation limits are obtained by sedimented DEM simulations of frictionless and highly
frictional particles, see section 2.2.2 for details. (right) Jammed ellipsoids with α = 0.8 in a
cylindrical container.

This ansatz only uses the mean value 〈φl〉 and the standard deviation σ of the prob-
ability distribution function f (φl |φg, α, X). No assumptions about shape and other
parameters are made.

Fig. 5.3 compares the experimental data with Eq. (5.3). The good agreement demon-
strates the validity of our ansatz. Larger deviations are obtained for the particles with
α = 0.59, which have a different friction coefficient. Furthermore, the limits obtained
by DEM simulations for the densest and loosest amorphous packings do not match
our local theory. These facts show the need for further parameters X defined on the
particle scale (e.g. friction, measures of local order, ...) to refine the theory and to
describe jammed packings.

A reason for the need of further parameters X can be the history-dependent be-
havior of frictional particles. It has recently been shown for spheres [3] and tetra-
hedra [150] that for identical φg the contact number can depend on the preparation
history. A modeling of such a behavior will require the addition of further locally
defined parameters. However, our data does not allow us to assess the type of higher
order corrections required. Further systematic experiments are needed to test possi-
ble candidates for the parameters X and to further refine the model towards a more
detailed description of packings of frictional ellipsoids.
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6 Outlook

This thesis has addressed the systematic differences between amorphous monodis-
perse sphere packings –as the simplest model– and amorphous ellipsoid packings – as
a simple model to address the effect of shape. Most importantly, this work has clearly
demonstrated that for the case of the ellipsoid packing model a local density-resolved
analysis, which may in principal directly relate to local physical processes, is needed
to fully describe the structural properties, and hence the physics, of this system.

While this work has systematically addressed a particular case, that of uniaxial
ellipsoids, it has also shown up many open questions and future directions. The
methodology and concepts developed here for the density-resolved analyses of
particulate packings form a solid bases to address the following questions that relate
to the insight gained from the ellipsoid system:

• The phase diagram of jammed ellipsoids shows similarities between prolate
particles with aspect ratio α and oblate particles of inverse aspect ratio, see
Fig. 1.3 (top). The packing fraction of the densest local configurations [P1],
the densest crystal configurations [57] and the densest and loosest jammed
packing limits [54, 55] show similar trends. Similar correspondences are found
in the equilibrium phase diagram of hard ellipsoids [154], see Fig. 1.3 (bottom).
Furthermore, these similarities are also present in other parameters, such as the
global contact number [56]. An explanation for these correspondences is still
missing and needs further investigations.

• A surprising result is the obtained universality in the distribution of the local
packing fractions of jammed packings of ellipsoids. The width of the distri-
bution is independent on the aspect ratio for all aspect ratios α, see Fig. 4.3.
Until now, we do not understand the reason for this universality. An interesting
question is when this universality breaks down. First results show that jammed
packings of tetrahedra do not show this universality. Further investigations in
this directions will help to understand the origin of this universality.

• The presented local structure analysis of Voronoi cell shapes and of contact
numbers reveals differences between spheres and ellipsoids. Both, cell shapes
and contact numbers, show the need for additional parameters X defined on
the particle scale, to describe the structure of packings of ellipsoids. A possible
candidate is the friction coefficient between the particles. Experiments and
simulations of packings with the same global packing fraction φg and aspect
ratio α, but of particles with different friction coefficients can confirm or rule
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Chapter 6. Outlook

out friction as a possible candidate. Furthermore, other structural parameters
need to be tested, as for example measures of local order.

• Analyzing bidisperse ellipsoid packings offers the possibility to assess the effect
of variations in particle size to packing properties. Currently, we are working on
comparing the structure of bidisperse to the structure of monodisperse ellipsoid
packings created by exactly the same preparation protocol. Obtained differences
and similarities will help to extract the effect of polydispersity to the structure
of particle packings.
An additional phenomena which can occur in bidisperse packings is size segre-
gation [123]. By tapping or vibrating the packing, particles of the same size can
agglomerate. Varying the tapping intensity can lead to packings with and with-
out size segregation. An interesting question is if and when size segregation
occurs during tapping and if it hinders the compaction process.

• Understanding compaction processes in granular material is important to un-
derstand geological processes. Slotterback et al. [184] performed compaction
experiments of immersed soda-lime glass spheres by thermal cycling. The
packings were imaged by a laser sheet scanning method. They found a pre-
ferred particle movement towards the center of the Voronoi cell. By using X-ray
imaging techniques where the X-ray source and the detector rotate (similar
to medical CT) instead of the sample, the whole compactification process can
be analyzed. Taking a tomographic image every few taps allows to follow
the particle movements during compaction. It would be interesting to see if
compaction by tapping follows the same movements as compaction by thermal
cycling. Furthermore, the movements of ellipsoids during compaction can be
analyzed and compared to the spherical case. This will help to understand the
effect of particle shape to particle movement.

• In industry and geology the mechanical properties of packings of granulates,
such as the response to applied external forces, are important to prevent land-
slides or understand the stability of granular materials. Linking the mechanical
properties to structural parameters can shed light into the understanding of
structure formation and the stability of granular packings. A possible setup are
shear experiments of granulates in a rheometer or shear cell with combined
force measurement and 3D imaging of the packing. The goal is to understand
changes in the mechanical response and their possible link to structural changes
inside the packing.

• Finally, experiments with real world granulates, such as sand or rock, are
important to test the relevance of the ellipsoid model for packings of such
particles. Observed differences and similarities between packings of real world
granulates and toy model systems allow us to analyze the contributions of the
different particle parameters, such as friction or shape, to the packing properties.
This helps to refine and adjust theories for complex shaped particles.
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We see the ellipsoid toy model described here as an important step towards a
complete understanding of granular matter and packing problems. Local structural
properties that relate to microscopic mechanisms on the particle level are not neces-
sarily captured by global variables. The local density-resolved analysis developed
here is a useful tool to understand how mechanisms on the particle level impact the
collective behavior. While technical details may require changes when analyzing real
world granulates with variations in size and shape, the conceptual method developed
here should be applicable. This local point of view on the particle scale will enable
not only progress in our understanding of granular systems, but will be of relevance
in the broader context of particulate matter and soft matter.
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